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Abstract

The supremum over all knot sequences of the max-norm of the orthogonal spline projector is studied with
respect to the order k of the splines and their smoothness. It is first bounded from below in terms of the
max-norm of the orthogonal projector onto a space of incomplete polynomials. Then, for continuous and for
differentiable splines, its order of growth is shown to be

√
k.
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1. Introduction

In 2001, Shadrin [10] confirmed de Boor’s long standing conjecture [1] that the max-norm
of the orthogonal spline projector is bounded independently of the underlying knot sequence.
However, the problem was not solved to complete satisfaction as the behavior of the max-norm
supremum remains unclear. Shadrin conjectured that its actual value is 2k − 1, having shown that
it cannot be smaller. Here the integer k represents the order of the splines, meaning that the splines
are of degree at most k − 1.

In this paper, we study the max-norm of the orthogonal projector onto splines of lower smooth-
ness. For a knot sequence � = (−1 = t0 < t1 < · · · < tN−1 < tN = 1) and for integers k and m
satisfying 0�m�k − 1, we denote by

Sk,m(�) :=
{
s ∈ Cm−1[−1, 1] : s|(ti−1,ti ) is a polynomial of order k, i = 1, . . . , N

}
,
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the space of splines of order k satisfying m smoothness conditions at each breakpoint t1, . . . , tN−1.
Thus Sk,0(�) is the space of piecewise polynomials, Sk,1(�) is the space of continuous splines,
and so on until Sk,k−1(�) which is the usual space of splines with simple knots. The orthogonal
projector PSk,m(�) onto the space Sk,m(�) is the only linear map from L2[−1, 1] into Sk,m(�)

satisfying

〈PSk,m(�)(f ), s〉 = 〈f, s〉, f ∈ L2[−1, 1], s ∈ Sk,m(�),

where 〈·, ·〉 is the usual inner product on L2[−1, 1]. We are interested in the norm of this projec-
tor when interpreted as a linear map from L∞[−1, 1] into L∞[−1, 1]. Shadrin established the
finiteness of

�k,m := sup
�

∥∥PSk,m(�)

∥∥∞

by proving that �k,k−1 = maxm �k,m is finite. His proof was based on the bound∥∥PSk,k−1(�)

∥∥∞ �
∥∥∥G−1

�

∥∥∥∞ ,

in terms of the �∞-norm of the inverse of the B-spline Gram matrix. But he also remarked that
the order of the bound obtained as such cannot be better than 4k/

√
k, the order of ‖G−1

� ‖∞ for
the Bernstein knot sequence �. Therefore, in order to get closer to the value 2k − 1, it is necessary
to propose a new approach.

The approach we exploit in the second part of this paper originates from the known behavior of
the quantity �k,0. The orthogonal projector onto Sk,0(�) has a local character, hence is deduced
from the orthogonal projector onto the space Pk of polynomials of order k on the interval [−1, 1].
In particular, for any knot sequence �, there holds ‖PSk,0(�)‖∞ = ‖PPk

‖∞. Then, according to
some properties of the orthogonal projector onto polynomials, see e.g. [5], we have∥∥PSk,0(�)

∥∥∞ = sup
‖f ‖∞ �1

∣∣PPk
(f )(1)

∣∣ so that �k,0 � √
k. (1)

We will show that the behavior of �k,m is not radically changed if we increase the smoothness to
m = 1 and 2, thus improving de Boor’s estimate [2]

�k,1 �
∥∥∥G−1

�

∥∥∥∞ � 4k/
√

k.

Namely, we will prove that

�k,m �cst · √
k, m = 1, 2.

On the other hand, the order of �k,m will be shown to be at least
√

k for m = 1, 2. This is a
consequence of a result which gives some insight into the inequality �k,k−1 �2k − 1. Indeed, for
any m, we will indicate a connection, extending the one of (1), between �k,m and the orthogonal
projector onto a certain space of incomplete polynomials. To be precise, we introduce the following
space of polynomials on [−1, 1]:

Pk,m := span
{
(1 + •)m, . . . , (1 + •)k−1

}
, (2)
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and we denote by �k,m the value at the point 1 of the Lebesgue function of the orthogonal projector
PPk,m

onto the space Pk,m, i.e.

�k,m := sup
‖f ‖∞ �1

∣∣PPk,m
(f )(1)

∣∣ .
With this terminology, we prove below the inequality

�k,m � k

k − m
�k,m. (3)

This lower bound is of order
√

k for small values of m and of order k for large values of m, which
gives some support to the speculative guess �k,m � k/

√
k − m.

2. Bounding �k,m from below

In this section, we formulate a result which readily implies the lower estimate of (3). Let us
introduce the quantity

�k,m,N := sup
�=(−1=t0<···<tN=1)

[
sup

‖f ‖∞ �1

∣∣PSk,m(�)(f )(1)
∣∣] .

We aim to bound �k,m,N+1 from below in terms of �k,m,N , following an idea used for m = k − 1
in [10] and which appeared first in [8] in the case k = 2. Namely, we prove in Sections 2.1 and
2.2 that

�k,m,N+1 � m

k
�k,m,N + �k,m. (4)

In other words, we have(
�k,m,N+1 − �k,m

)
� m

k

(
�k,m,N − �k,m

)
where �k,m := k

k − m
�k,m.

In view of �k,m,1 = �k,0 = �k,0, we infer

�k,m,N − �k,m �
(m

k

)N−1 (
�k,0 − �k,m

) −→
N→∞ 0 hence sup

N

�k,m,N ��k,m.

This translates into the following theorem.

Theorem 1. There hold the inequalities

sup
�=(−1=t0<···<tN=1)

∥∥PSk,m(�)

∥∥∞ � �k,m,N �
[(m

k

)N−1
]

�k,0 +
[

1 −
(m

k

)N−1
]

�k,m.

In particular, one has

sup
�

∥∥PSk,m(�)

∥∥∞ ��k,m.

We note that, in the case k = 2, Malyugin [7] established that these inequalities are all equalities.
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2.1. Estimating �k,m,N+1 in terms of �k,m,N

In order to derive (4), let us fix a knot sequence

� = (−1 = t0 < t1 < · · · < tN−1 < tN = 1),

and let us consider the refined knot sequence

�t := (−1 = t0 < t1 < · · · < tN−1 < t < tN = 1).

We have the splitting

Sk,m(�t ) = Sk,m(�) ⊕ Tk,m,t where Tk,m,t := span
{
(• − t)m+, . . . , (• − t)k−1+

}
.

Let Pt , P and Qt denote the orthogonal projectors onto Sk,m(�t ), Sk,m(�) and Tk,m,t , respectively,
and let 1 denote the function constantly equal to 1. We are going to establish first that

εt := sup
‖f ‖∞ �1

‖Pt(f ) − P(f ) − Qt(f ) + P(f )(1)Qt (1)‖∞ −→
t→1

0. (5)

The following lemma is a kind of folklore.

Lemma 2. The orthogonal projector P from a Hilbert space H onto a finite dimensional subspace
V = V1 ⊕V2 can be expressed in terms of the orthogonal projectors P1 and P2 onto V1 and V2 as

P = (I − P1P2)
−1P1(I − P2) + (I − P2P1)

−1P2(I − P1).

Proof. We remark first that the operator I − P1P2 is invertible, because ‖P1P2‖ < 1 for the
operator norm subordinated to the Hilbert norm ‖ · ‖. Indeed, for v2 ∈ V2, we have

‖v2‖2 = ‖P1v2‖2 + ‖v2 − P1v2‖2 > ‖P1v2‖2,

and due to the finite dimension of V2, we derive that ‖P1|V2‖<1, hence that ‖P1P2‖�‖P1|V2‖‖P2‖
< 1. Similar arguments prove that the operator I − P2P1 is invertible. Then, for h ∈ H , we write
Ph =: v1 + v2 for v1 ∈ V1 and v2 ∈ V2. We apply P1 and P1P2 to Ph, so that, in view of
P1P = P1 and P2P = P2, we get

P1h = v1 + P1v2
P1P2h = P1P2v1 + P1v2

thus P1(I − P2)h = (I − P1P2)v1.

We infer that v1 = (I − P1P2)
−1P1(I − P2)h. The expression for v2 is obtained by exchanging

the indices. �

In our situation, and in view of (I − QtP )−1 = I + Qt(I − PQt )
−1P , Lemma 2 reads

Pt = (I − PQt )
−1P(I − Qt) + (I − QtP )−1Qt(I − P)

= (I − PQt )
−1(P − PQt ) + Qt − QtP + Qt(I − PQt )

−1PQt (I − P). (6)

We claim that, for the operator norm subordinated to the max-norm, one has

QtP − P(•)(1)Qt (1) −→ 0, PQt −→ 0.
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To justify this claim, we remark first that the orthogonal projector Qt is obtained from the orthog-
onal projector PPk,m

onto the space Pk,m introduced in (2) by a linear transformation between the
intervals [t, 1] and [−1, 1]. Namely, for u ∈ [t, 1], we have

Qt(f )(u) = PPk,m
(f̃ )

(
2u − 1 − t

1 − t

)
, f̃ (x) := f

(
(1 − t)x + 1 + t

2

)
.

Then, for s ∈ Sk,m(�), ‖s‖∞ �1, we get, as ‖s′‖∞ �C for some constant C,

‖Qt(s) − s(1)Qt (1)‖∞ = ∥∥PPk,m
(̃s − s(1)1)

∥∥∞
�
∥∥PPk,m

∥∥∞ ‖s − s(1)1‖∞,[t,1] �
∥∥PPk,m

∥∥∞ C(1 − t).

This implies the first part of our claim. Next, fixing an orthonormal basis (si)
L
i=1 of Sk,m(�),

a function f vanishing on [−1, t] and such that ‖f ‖∞ �1 satisfies

‖Pf ‖∞ =
∥∥∥∥∥

L∑
i=1

〈si, f 〉si
∥∥∥∥∥

∞
�

L∑
i=1

∫ 1

t

|si(u)| du · ‖si‖∞ =: �t .

The second part of our claim follows from the facts that �t → 0 as t → 1 and that the norm of
Qt is independent of t.

Now, looking at the limit of each term of (6) with respect to the operator norm, we derive (5)
in the condensed form

Pt − P − Qt + P(•)(1)Qt (1) −→
t→1

0.

From the definition of εt , one has in particular

sup
‖f ‖∞ �1

|Pt(f )(1) − [1 − Qt(1)(1)] P(f )(1) − Qt(f )(1)| �εt . (7)

Let us stress that [1 − Qt(1)(1)] is independent of t, as it is simply [1 − PPk,m
(1)(1)] =: �k,m.

For f, g ∈ L∞[−1, 1], ‖f ‖∞ �1, ‖g‖∞ �1, and for ft ∈ L∞[−1, 1] defined by

ft (x) =
{

f (x), x ∈ [−1, t],
g(x), x ∈ [t, 1],

we obtain from (7) the inequality∣∣Pt(ft )(1) − �k,mP (ft )(1) − Qt(ft )(1)
∣∣ �εt .

We note that Qt(ft ) = Qt(g) and that |P(ft − f )(1)| ��t to get

�k,m,N+1 � |Pt(ft )(1)| �
∣∣�k,mP (ft )(1) + Qt(ft )(1)

∣∣− εt

�
∣∣�k,mP (f )(1) + Qt(g)(1)

∣∣− ∣∣�k,m

∣∣ �t − εt .

As the functions f and g were arbitrary, we deduce that

�k,m,N+1 �
∣∣�k,m

∣∣ sup
‖f ‖∞ �1

|P(f )(1)| + sup
‖g‖∞ �1

|Qt(g)(1)| − ∣∣�k,m

∣∣ �t − εt .

The second supremum is simply the constant �k,m. In this inequality, we now take first the limit
as t → 1 then the supremum over � to obtain (4) in the provisional form

�k,m,N+1 �
∣∣�k,m

∣∣�k,m,N + �k,m.
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2.2. The orthogonal projector onto Pk,m

To complete the proof of Theorem 1, we need the value of �k,m, thus the value of PPk,m
(1)(1).

For this purpose, we call upon a few important properties of Jacobi polynomials which can all be
found in Szegö’s monograph [12].

The Jacobi polynomials P
(�,�)
n are defined by Rodrigues’ formula

(1 − x)�(1 + x)�P
(�,�)
n (x) = (−1)n

2nn!
dn

dxn

[
(1 − x)n+�(1 + x)n+�

]
. (8)

They are orthogonal on [−1, 1] with respect to the weight (1 − x)�(1 + x)�, when � > −1 and

� > −1 to insure integrability. They obey the symmetry relation P
(�,�)
n (x) = (−1)nP

(�,�)
n (−x)

and the differentiation formula

d

dx

[
P

(�,�)
n (x)

]
= n + � + � + 1

2
P

(�+1,�+1)

n−1 (x). (9)

Their values at the point 1 are

P
(�,�)
n (1) =

(
n + �

n

)
= (n + �) · · · (� + 1)

n! . (10)

These properties recalled, we can formulate the following lemma, which implies in particular that
�k,m = (−1)k−mm/k.

Lemma 3. There hold the representation

PPk,m
(f )(1) = 2−m−1(k + m)

∫ 1

−1
(1 + x)mP

(1,2m)
k−1−m(x)f (x) dx

and the equality

PPk,m
(1)(1) = 1 − (−1)k−m m

k
.

Proof. Let us introduce the polynomials pi ∈ Pk,m defined by pi(x) := (1 + x)mP
(0,2m)
i (x).

The orthogonality conditions

h
(0,2m)
i · �i,j :=

∫ 1

−1
(1 + x)2mP

(0,2m)
i (x)P

(0,2m)
j (x) dx =

∫ 1

−1
pi(x)pj (x) dx

show that system (pi)
k−1−m
i=0 is an orthogonal basis of Pk,m. Therefore the orthogonal projector

onto Pk,m admits the representation

PPk,m
(f ) =

k−1−m∑
i=0

〈pi, f 〉
‖pi‖2

2

pi.

For y ∈ [−1, 1], it reads

PPk,m
(f )(y) =

k−1−m∑
i=0

1

h
(0,2m)
i

∫ 1

−1
(1 + x)mP

(0,2m)
i (x)f (x) dx · (1 + y)mP

(0,2m)
i (y)

=:
∫ 1

−1
(1 + x)m(1 + y)mK

(0,2m)
k−1−m(x, y)f (x) dx.
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According to [12, p. 71], the kernel K
(0,2m)
k−1−m(x, 1) is 2−2m−1(k + m)P

(1,2m)
k−1−m(x), hence the rep-

resentation mentioned in the lemma. We then have

PPk,m
(1)(1) = 2−m−1(k + m)

∫ 1

−1
(1 + x)mP

(1,2m)
k−1−m(x) dx

=
(9)

2−m

∫ 1

−1
(1 + x)m

d

dx

[
P

(0,2m−1)
k−m (x)

]
dx

= 2−m

([
(1 + x)mP

(0,2m−1)
k−m (x)

]1

−1
− m

∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x) dx

)
=

(10)
1 − 2−mm

∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x) dx.

The latter integral equals (−1)k−m2m/k, as the following calculation shows:∫ 1

−1
(1 + x)m−1P

(0,2m−1)
k−m (x) dx

=
(8)

(−1)k−m

2k−m(k − m)!
∫ 1

−1
(1 + x)−m · dk−m

dxk−m

[
(1 − x)k−m(1 + x)k+m−1

]
dx

= 1

2k−m(k − m)!
∫ 1

−1

dk−m

dxk−m

[
(1 + x)−m

] · (1 − x)k−m(1 + x)k+m−1 dx

= 1

2k−m(k − m)!
(−1)k−m(k − 1)!

(m − 1)!
∫ 1

−1
(1 − x)k−m(1 + x)m−1 dx

= (−1)k−m(k − 1)!
2k−m(k − m)!(m − 1)!

2k(k − m)!(m − 1)!
k! = (−1)k−m 2m

k
. �

3. On the constant �k,m

We now justify that the quantity �k,m is at least of order
√

k for small values of m and at least
of order k for large values of m. Precisely, the behavior of �k,m is given below.

Proposition 4. The lower bounds �k,m for �k,m satisfy

�k,k−1 = 2k − 1,

�k,k−2 ∼
k→∞ ck−2k, ck−2 = 4e−1 ≈ 1.4715,

�k,k−3 ∼
k→∞ ck−3k, ck−3 ≈ 1.2216,

�k,m ∼
k→∞ c

√
k, c = 2

√
2/� ≈ 1.5957 if m is independent of k.

This will follow at once when we establish the behavior of the constant �k,m. According to
Lemma 3, this constant can be expressed as

�k,m = 2−m−1(k + m)

∫ 1

−1
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx. (11)

To the best of our knowledge, whether �k,m equals the max-norm of the orthogonal projector onto
Pk,m is an open question, although this is known for m = 0, is trivial for m = k − 1 and can be
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shown for m = k − 2. It also seems that there has been no attempt to evaluate the order of growth
of �k,m uniformly in m. Nevertheless, for small and large values of m, such evaluations can be
carried out.

Lemma 5. One has

�k,k−1 = 2 − 1/k,

�k,k−2 −→
k→∞ 8e−1 ≈ 2.9430,

�k,k−3 −→
k→∞ 2 + 8(2 + √

3)e(−3−√
3)/2 − 8(2 − √

3)e(−3+√
3)/2 ≈ 3.6649.

Proof. The fact that P
(1,2k−2)
0 (x) = 1 clearly yields the value of �k,k−1. We then compute

P
(1,2k−4)
1 (x) = 1

2 [(2k − 1)(1 + x) − 4k + 6] and we subsequently obtain

�k,k−2 = 2

k
+ 4(2k − 3)

k

(
2k − 3

2k − 1

)k−1

−→
k→∞ 8e−1.

Finally, we find that P
(1,2k−6)
2 (x) equals

1
4

[
(k − 1)(2k − 1)(1 + x)2 − 8(k − 1)(k − 2)(1 + x) + 4(k − 2)(2k − 5)

]
.

The roots of this quadratic polynomial are

x1 =
2k − 7 − 2

√
3(k−2)
k−1

2k − 1
, x2 =

2k − 7 + 2
√

3(k−2)
k−1

2k − 1
.

After some calculations, we obtain the announced limit from the expression

�k,k−3 = 2k − 3

k
+ 4(2k − 3)

k
[(2 − k)(1 + x1) + 2k − 5]

(
1 + x1

2

)k−2

−4(2k − 3)

k
[(2 − k)(1 + x2) + 2k − 5]

(
1 + x2

2

)k−2

. �

As for small values of m, the behavior of �k,m follows from a result of Szegö [11, pp. 84–86],
whose first part was sharpened in [6].

Proposition 6 (Szegö [11]). If 2	 − � + 3
2 > 0, there is a constant c

(�,�)

	,
 such that∫ 1

0
(1 − x)	(1 + x)


∣∣∣P (�,�)
n (x)

∣∣∣ dx ∼
n→∞ c

(�,�)

	,
 n− 1
2 .

If 2	 − � + 3
2 < 0, there is a constant d

(�,�)

	,
 such that∫ 1

0
(1 − x)	(1 + x)


∣∣∣P (�,�)
n (x)

∣∣∣ dx ∼
n→∞ d

(�,�)

	,
 n−2	+�−2.
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Only the formula for the constant c
(�,�)

	,
 is relevant to us, it is

c
(�,�)

	,
 = 2	+
+2

�
√

�

∫ �
2

0
(sin �/2)2	−�+ 1

2 (cos �/2)2
−�+ 1
2 d�.

Lemma 7. If m is independent of k, one has

�k,m ∼
k→∞

2
√

2√
�

√
k.

Proof. We split the integral appearing in (11) in two and use the symmetry relation to obtain∫ 1

−1
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx

=
∫ 1

0
(1 − x)m

∣∣∣P (2m,1)
k−1−m(x)

∣∣∣ dx +
∫ 1

0
(1 + x)m

∣∣∣P (1,2m)
k−1−m(x)

∣∣∣ dx

∼
k→∞

(
c
(2m,1)
m,0 + c

(1,2m)
0,m

)
k− 1

2 .

Substituting the values of the constants gives

c
(2m,1)
m,0 + c

(1,2m)
0,m

= 2m+2

�
√

�

[∫ �
2

0
(sin �/2)

1
2 (cos �/2)−

1
2 d� +

∫ �
2

0
(sin �/2)−

1
2 (cos �/2)

1
2 d�

]

= 2m+2

�
√

�

[∫ �
2

0
(sin �/2)

1
2 (cos �/2)−

1
2 d� +

∫ �

�
2

(cos �/2)−
1
2 (sin �/2)

1
2 d�

]

= 2m+2

�
√

�

∫ �

0
(sin �/2)

1
2 (cos �/2)−

1
2 d�.

For p, q > 0, it is known that

∫ �

0
(sin �/2)2p−1 (cos �/2)2q−1 d� =

∫ 1

0
up−1(1 − u)q−1 du = �(p)�(q)

�(p + q)
.

Thus, in view of �(z)�(1 − z) = �/ sin(�z), we derive that

c
(2m,1)
m,0 + c

(1,2m)
0,m = 2m+2

�
√

�

�
( 3

4

)
�
( 1

4

)
�(1)

= 2m+2
√

2√
�

,

and the conclusion follows. �

Some numerical values of the constant �k,m are indicated in the table below.
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�k,m k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 0 1 1.6666 2.1757 2.6042 2.9815 3.3225 3.6360
m = 1 1.5 2.1066 2.5693 2.9625 3.3120 3.6305
m = 2 1.6666 2.3221 2.8 3.1959 3.5430
m = 3 1.75 2.4493 2.9503 3.3586
m = 4 1.8 2.5332 3.0560
m = 5 1.8333 2.5927
m = 6 1.8571

We observe that �k,0 increases with k, a fact which has been proved in [9]. It also seems that
�k,m increases with k for any fixed m. On the other hand, when k is fixed, the quantity �k,m does
not decrease with m, e.g. we have �10,0 ≈ 4.4607 < �10,1 ≈ 4.4619. The tentative inequality
�2k,k ��2k,0 may nevertheless hold and would account for the guess �k,m � k(k − m)−1/2

rather than the other seemingly natural one, namely �k,m � k(k+m)/2k . Indeed, we would have
�2k,k = 2k/k · �2k,k �2�2k,0 �cst · √

k, so that the order of �2k,k could not be k3/4.
We display at last some numerical values of the lower bound �k,m.

�k,m k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

m = 0 1 1.6666 2.1757 2.6042 2.9815 3.3225 3.6360
m = 1 3 3.16 3.4258 3.7031 3.9744 4.2356
m = 2 5 4.6443 4.6666 4.7938 4.9603
m = 3 7 6.1233 5.9006 5.8775
m = 4 9 7.5996 7.1308
m = 5 11 9.0745
m = 6 13

For a fixed k, it seems that �k,m increases with m. However, for a fixed m, it appears that �k,m is
not a monotonic function of k. The initial decrease of �k,m could be explained by the facts that
�m+1,m = 2m + 1 and that �2m,m � √

m, if confirmed.

4. Bounding �k,m from above: description of the method

We present here the key steps of the arguments we will use to determine an upper bound for
�k,m. The idea of orthogonal splitting comes from Shadrin, who suggested it to us in a private
communication.

4.1. Orthogonal splitting

The space Sk,m(�), of dimension kN − m(N − 1), is a subspace of the space Sk,0(�), of
dimension kN, hence we can consider the orthogonal splitting

Sk,0(�) =: Sk,m(�)
⊥⊕ Rk,m(�) with dim Rk,m(�) = m(N − 1).
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If PSk,0(�), PSk,m(�) and PRk,m(�) represent the orthogonal projectors onto Sk,0(�), Sk,m(�) and
Rk,m(�), respectively, we have

PSk,0(�) = PSk,m(�) + PRk,m(�) thus
∥∥PSk,m(�)

∥∥∞ �
∥∥PSk,0(�)

∥∥∞ + ∥∥PRk,m(�)

∥∥∞ .

We have already mentioned that ‖PSk,0(�)‖∞ = �k,0 for any knot sequence �, therefore our task
is to bound the norm ‖PRk,m(�)‖∞.

In order to describe the space Rk,m(�), we set

(t0 = · · · = t0︸ ︷︷ ︸
k

< t1 = · · · = t1︸ ︷︷ ︸
k−m

< · · · < tN−1 = · · · = tN−1︸ ︷︷ ︸
k−m

< tN = · · · = tN︸ ︷︷ ︸
k

)

=: (�1 � · · · ��L+k),

so that Sk,m(�) admits the basis of L1-normalized B-splines (Mi)
L
i=1, where Mi := M�i ,... ,�i+k

.
Using the Peano representation of divided differences, we have

f ∈ Rk,m(�) ⇐⇒ f ∈ Sk,0(�),

∫ 1

−1
Mi · f = 0 for all i

⇐⇒ f = F (k), F ∈ S2k,k(�), [�i , . . . , �i+k]F = 0 for all i.

It is then derived that

Rk,m(�) =
⎧⎨⎩F (k), F ∈ S2k,k(�),

F ≡ 0 k-fold at t0,

F ≡ 0 (k − m)-fold at ti ,

F ≡ 0 k-fold at tN

i = 1, . . . , N − 1,

⎫⎬⎭
= R1

k,m(�) ⊕ R2
k,m(�) ⊕ · · · ⊕ RN−1

k,m (�),

where each space Ri
k,m(�), supported on [ti−1, ti+1] and of dimension m, is characterized by

f ∈ Ri
k,m(�) ⇐⇒ f = F (k) for some F ∈ S2k,k(�), supp F = [ti−1, ti+1],

and

⎧⎨⎩
F ≡ 0 k-fold at ti−1,

F ≡ 0 (k − m)-fold at ti ,

F ≡ 0 k-fold at ti+1.

4.2. A Gram matrix

The max-norm of the orthogonal projector onto the space Rk,m(�) will be bounded with the
help of a Gram matrix. We reproduce here an idea that has been central to the theme of the
orthogonal spline projector for some time.

Lemma 8. Let (i )
m(N−1)
i=1 and (̂j )

m(N−1)
j=1 be bases of Rk,m(�) and let M := [〈i , ̂j 〉

]m(N−1)

i,j=1
be the Gram matrix with respect to these bases. If, for some constants �, �1 and �∞, there hold

(i)
∥∥∥M−1

∥∥∥∞ ��, (ii)
∥∥i

∥∥
1 ��1, (iii)

∥∥∥∑ aj ̂j

∥∥∥∞ ��∞ ‖a‖∞ ,

then the max-norm of the orthogonal projector onto Rk,m(�) satisfies∥∥PRk,m(�)

∥∥∞ �� · �1 · �∞.
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Proof. Let P denote the projector PRk,m(�). For f ∈ L∞[−1, 1], ‖f ‖∞ = 1, let us write

P(f ) =∑m(N−1)
j=1 aj ̂j , so that ‖P(f )‖∞ ��∞‖a‖∞. The equalities

bi := 〈i , f 〉 = 〈i , P (f )〉 =
∑
j

aj 〈i , ̂j 〉 = (Ma)i

mean that a = M−1b. Since |bi |�‖i‖1, we infer that ‖a‖∞ �‖M−1‖∞ · ‖b‖∞ �� · �1. Hence
we have ‖P(f )‖∞ �� · �1 · �∞, which completes the proof, as the function f was arbitrary. �

Let us remark that the entries of the Gram matrix will be easily calculated by applying the
following formula, obtained by integration by parts. One has, for ri := R

(k)
i ∈ Ri

k,m(�),

〈ri, s〉 =
m−1∑
l=0

(−1)lR
(k−1−l)
i (ti )

[
s(l)(t−i ) − s(l)(t+i )

]
, s ∈ Sk,0(�). (12)

4.3. Bounding the norm of the inverse of some matrices

If we combine bases of the spaces Ri
k,m(�) to obtain L1 and L∞-normalized bases of Rk,m(�),

with respect to which we form the Gram matrix, we observe that the latter is block-tridiagonal, as
a result of the disjointness of the supports of Ri

k,m(�) and Rj
k,m(�) when |i − j | > 1. However,

we may permute the elements of the bases to obtain the Gram matrix in the form considered in
the following lemma and to bound the �∞-norm of its inverse accordingly. Let us recall that a
square matrix A is said to be of bandwidth d if Ai,j = 0 as soon as |i − j | > d .

Lemma 9. Let B and C be two matrices such that BC and CB are of bandwidth d. If � :=
max(‖BC‖1, ‖CB‖1) < 1, then, with � := max(‖B‖∞, ‖C‖∞), the matrix

N :=
[

I B
C I

]
has an inverse satisfying

∥∥∥N−1
∥∥∥∞ �(1 + �)

1 + (2d − 1)�

(1 − �)2 .

Proof. First of all, let A be a matrix of bandwidth d satisfying ‖A‖1 < 1. For indices i and j, let

q :=
⌈ |i−j |

d

⌉
represent the smallest integer not smaller than |i−j |

d
. We borrow from Demko [3]

the estimate∣∣∣(I − A)−1
i,j

∣∣∣ � ‖A‖q
1

1 − ‖A‖1
.

Indeed, for any integer p the matrix Ap is of bandwidth pd and, as |i − j | > (q − 1)d, we get∣∣∣(I − A)−1
i,j

∣∣∣ =
∣∣∣∣∣∣

∞∑
p=0

A
p
i,j

∣∣∣∣∣∣ =
∣∣∣∣∣

∞∑
p=q

A
p
i,j

∣∣∣∣∣ �
∞∑

p=q

|Ap
i,j |�

∞∑
p=q

‖Ap‖1 �
∞∑

p=q

‖A‖p
1 ,

hence the announced inequality. It then follows that∥∥∥(I − A)−1
∥∥∥∞ = max

i

∑
j

∣∣∣(I − A)−1
i,j

∣∣∣
� 1

1 − ‖A‖1

⎡⎣1 + 2d

∞∑
q=1

‖A‖q
1

⎤⎦ = 1 + (2d − 1)‖A‖1

(1 − ‖A‖1)2 . (13)
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We now observe that[
I B
C I

]−1

=
[

(I − BC)−1 −B(I − CB)−1

−C(I − BC)−1 (I − CB)−1

]
.

The estimate of (13) for A = BC and A = CB implies the conclusion. �

5. Bounding �k,m from above: the case of continuous splines

We consider here the case m=1, k�2. We have already established that the order of growth
of �k,1= sup� ‖PSk,1(�)‖∞ is at least

√
k and we prove in this section that it is in fact

√
k. We

exploit the method we have just described to obtain the following theorem.

Theorem 10. For any knot sequence �,

∥∥PRk,1(�)

∥∥∞ � 2k(k + 1)

(k − 1)2 �k,0,
∥∥PSk,1(�)

∥∥∞ � 3k2 + 1

(k − 1)2 �k,0.

First of all, we note that the space Ri
k,1(�) is spanned by a single function fi supported on

[ti−1, ti+1]. The latter must be the kth derivative of a piecewise polynomial Fi of order 2k that
vanishes k-fold at ti−1 and at ti+1, (k − 1)-fold at ti and whose (k − 1)st derivative is continuous
at ti . It is constructed from the following polynomial of order 2k:

F(x) := (−1)k−1

2k−1 k! (1 − x)k−1(1 + x)k,

which vanishes k-fold at −1 and (k − 1)-fold at 1. The notations

hi := ti − ti−1, �i := 1

hi

, i = 1, . . . , N,

are to be used in the rest of the paper. We define the function Fi by

Fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
hi

2

)k−1

F

(
2x − ti−1 − ti

hi

)
, x ∈ (ti−1, ti),(−hi+1

2

)k−1

F

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti , ti+1),

0, x /∈ (ti−1, ti+1).

We renormalize the function fi := F
(k)
i by setting f̂i := 1

4(�i+�i+1)
fi , where

fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2�iF

(k)

(
2x − ti−1 − ti

hi

)
, x ∈ (ti−1, ti),

−2�i+1F
(k)

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti , ti+1),

0, x /∈ (ti−1, ti+1).
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At this point, let us recall the connection [12, p. 64] between the Jacobi polynomials P
(−l,�)
n and

P
(l,�)

n−l ,

(
n

l

)
P

(−l,�)
n (x) =

(
n + �

l

)(
x − 1

2

)l

P
(l,�)

n−l (x), l = 1, . . . , n, (14)

which accounts for the following expression for F (k):

F (k)(x) =
(8)

−2(1 − x)−1P
(−1,0)
k (x) =

(14)
P

(1,0)
k−1 (x).

We are now going to establish that the bases (fi)
N−1
i=1 and (f̂j )

N−1
j=1 of Rk,1(�) satisfy the three

conditions of Lemma 8.

5.1. Condition (i)

First we determine the inner products 〈fi, f̂j 〉, non-zero only for |i − j |�1. This requires the
values of the successive derivatives of Fi at ti−1, at ti and at ti+1, which are derived from the
values of the successive derivatives of F at −1 and at 1. These are obtained from (9) and (10),
namely they are

F (k−1)(1) = 2

k
,

F (k)(−1) = (−1)k−1, F (k)(1) = k,

F (k+1)(−1) = (−1)k
k2 − 1

2
, F (k+1)(1) = k(k2 − 1)

4
.

Eq. (12) for ri = fi reads

〈fi, s〉 = F
(k−1)
i (ti)

[
s(t−i ) − s(t+i )

] = 2

k

[
s(t−i ) − s(t+i )

]
, s ∈ Sk,0(�).

We compute the differences

fi(t
−
i ) − fi(t

+
i ) = 2�iF

(k)(1) + 2�i+1F
(k)(1) = 2k(�i + �i+1),

fi(t
−
i−1) − fi(t

+
i−1) = 0 − 2�iF

(k)(−1) = 2(−1)k�i .

As a result, we obtain

〈fi, f̂i〉 = 1, 〈fi−1, f̂i〉 = (−1)k

k

�i

�i + �i+1
then 〈fi+1, f̂i〉 = (−1)k

k

�i+1

�i + �i+1
.
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The Gram matrix with respect to the bases (fi)
N−1
i=1 and (f̂j )

N−1
j=1 therefore has the form

M =

f̂1 f̂2 f̂3 f̂4 . . .

f1

f2

f3

f4

...

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(−1)k

k
�2 0 0 . . .

(−1)k

k
�1 1

(−1)k

k
�3 0 . . .

0
(−1)k

k
�2 1

. . .

0 0
(−1)k

k
�3 1

...
... 0

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where �i := �i

�i+�i+1
�0 and �i := �i+1

�i+�i+1
�0 satisfy �i + �i = 1. To bound the �∞-norm of the

inverse of this matrix, we could use (13) directly. However, a result of Kershaw [4] about scaled
transposes of such matrices provide estimates for the entries of M−1 which, when summed, yield
the more accurate bound

∥∥∥M−1
∥∥∥∞ � k2

(k − 1)2 .

5.2. Condition (ii)

From the expression for fi , we get ‖fi‖1 = 2‖F (k)‖1 = 2‖P (1,0)
k−1 ‖1. Therefore, according to

(11), we have

‖fi‖1 = 4

k
�k,0.

5.3. Condition (iii)

Let us start by establishing the following lemma.

Lemma 11. For any �, � ∈ R, one has

max
x∈[−1,1]

∣∣∣�P
(l,0)
k−l (x) + �P (l,0)

k−l (−x)

∣∣∣ = max
x∈{−1,1}

∣∣∣�P
(l,0)
k−l (x) + �P (l,0)

k−l (−x)

∣∣∣ .
Proof. Without loss of generality, we can assume that �� |�|. First of all, the identity

P
(l,0)
k−l (x) =

l∑
j=0

(
l

j

)(
1 + x

2

)j

P
(j,j)
k−l−j (x)
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is easily derived using (8), (9) and (14). Indeed, we have

P
(l,0)
k−l (x) = 2l (−1)l(1 − x)−lP

(−l,0)
k (x)

= (k − l)!
k!

(−1)k−l

2k−l (k − l)!
dk

dxk

[
(1 + x)l · (1 − x)k−l (1 + x)k−l

]
= (k − l)!

k!
l∑

j=0

(
k

j

)
dj

dxj

[
(1 + x)l

]
· dl−j

dxl−j

[
P

(0,0)
k−l (x)

]

=
l∑

j=0

(k − l)!
k!

k!
(k − j)! j !

l!
(l − j)!

(k − j)!
(k − l)!

(
1 + x

2

)l−j

P
(l−j,l−j)
k−2l+j (x)

=
l∑

j=0

(
l

j

)(
1 + x

2

)j

P
(j,j)
k−l−j (x).

This identity and the symmetry relation yield

�P
(l,0)
k−l (x) + �P (l,0)

k−l (−x)

=
l∑

j=0

(
l

j

)[
�

(
1 + x

2

)j

+ (−1)k−l−j �

(
1 − x

2

)j
]

P
(j,j)
k−l−j (x).

Every term in the previous sum is maximized in absolute value at x = 1. Indeed, according to

[12, Theorem 7.32.1], there holds
∣∣∣P (j,j)

k−l−j (x)

∣∣∣ �P
(j,j)
k−l−j (1). Besides, for j �1, we have∣∣∣∣∣�

(
1 + x

2

)j

+ (−1)k−l−j �

(
1 − x

2

)j
∣∣∣∣∣ ��

[(
1 + x

2

)j

+
(

1 − x

2

)j
]

��,

and for j = 0, we have
∣∣� + (−1)k−l�

∣∣ = � + (−1)k−l�. These facts imply that∣∣∣�P
(l,0)
k−l (x) + �P (l,0)

k−l (−x)

∣∣∣ ��P
(l,0)
k−l (1) + �P (l,0)

k−l (−1). �

Let us now bound the max-norm of r :=∑ aj f̂j in terms of ‖a‖∞. This max-norm is achieved

on [tl , tl+1], say, and since r|[tl ,tl+1] = alf̂l + al+1f̂l+1, Lemma 11 guarantees that this max-norm
is achieved at one of the endpoints of [tl , tl+1], say at tl . Thus we have

‖r‖∞ �
[∣∣f̂l(t

+
l )
∣∣+ ∣∣f̂l+1(t

+
l )
∣∣] ‖a‖∞ �

[
1
2

∣∣∣F (k)(1)

∣∣∣+ 1
2

∣∣∣F (k)(−1)

∣∣∣] ‖a‖∞,

that is∥∥∥∑ aj f̂j

∥∥∥∞ � k + 1

2
‖a‖∞.

5.4. Conclusion

The estimates obtained from conditions (i)–(iii) yield∥∥PRk,1(�)

∥∥∞ � k2

(k − 1)2 · 4

k
�k,0 · k + 1

2
= 2k(k + 1)

(k − 1)2 �k,0. (15)
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To conclude, we derive the bound

∥∥PSk,1(�)

∥∥∞ �
∥∥PSk,0(�)

∥∥∞ + ∥∥PRk,1(�)

∥∥∞ ��k,0 + 2k(k + 1)

(k − 1)2 �k,0 = 3k2 + 1

(k − 1)2 �k,0.

This upper bound is much better than the bound ‖G−1
� ‖∞, already mentioned in the Introduction,

which was given by de Boor in [2], at least asymptotically. In fact, this becomes true as soon as
k = 4, as the following table shows. The values of ‖G−1

� ‖∞ are taken from [10].

k 2 3 4 5 6 7 8

3k2+1
(k−1)2 �k,0 21.666 15.230 14.178 14.162 14.486 14.948 15.470

‖G−1
� ‖∞ 3 13 41.666 171 583.8 2364.2 8373.857

Let us finally note that the estimate of (15) is fairly precise in the sense that it is possible to
obtain sup� ‖PRk,1(�)‖∞ �2�k,0 simply by considering PRk,1(�)(•)(t−1 ) when N = 2, t1 → 0.
This implies

sup
�

∥∥PSk,1(�)

∥∥∞ � sup
�

∥∥PRk,1(�)

∥∥∞ − ∥∥PSk,0(�)

∥∥∞ ��k,0.

If, as we believe, the lower bound �k,m is the actual value of �k,m, the previous inequality reads
�k,1 ��k,0. This is in accordance with the expected monotonicity of �k,m and can be proved as
follow. First, we readily check that

Pk,m = Pk,m+1
⊥⊕ span

[
(1 + •)mP

(0,2m+1)
k−1−m

]
.

From the representations of the Lebesgue functions at the point 1 of the orthogonal projectors
onto these spaces, we obtain, for some constant C, the identity

2−m−1(k + m)(1 + x)mP
(1,2m)
k−1−m(x) = 2−m−2(k + m + 1)(1 + x)m+1P

(1,2m+2)
k−2−m (x)

+ C(1 + x)mP
(0,2m+1)
k−1−m (x).

The value of the constant C is 2−m−1(2m + 1), as seen from the choice x = 1. With m = 0,
we get

k

2
P

(1,0)
k−1 (x) = k + 1

4
(1 + x)P

(1,2)
k−2 (x) + 1

2
P

(0,1)
k−1 (x).

The inequality �k,0 ��k,1 is then deduced from

�k,0 = �k,0 = k

2

∫ 1

−1
|P (1,0)

k−1 (x)| dx

� k + 1

4

∫ 1

−1
(1 + x)|P (1,2)

k−2 (x)| dx + 1

2

∫ 1

−1
|P (0,1)

k−1 (x)| dx

= �k,1 + 1

k
�k,0 = k − 1

k
�k,1 + 1

k
�k,0.
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6. Bounding �k,m from above: the case of differentiable splines

We consider here the case m = 2, k�3, for which the order of �k,2 = sup� ‖PSk,2(�)‖∞ is

also shown to be
√

k. This section is dedicated to the proof of the following proposition, where
the notation un�vn for two sequences (un) and (vn) means that there exists a sequence (wn) such
that un �wn, n ∈ N, and wn ∼

n→∞ vn.

Proposition 12. For any knot sequence �,

∥∥PRk,2(�)

∥∥∞ �36
√

2√
�

√
k,

∥∥PSk,2(�)

∥∥∞ �38
√

2√
�

√
k.

The function fi previously defined is an element of the two-dimensional space Ri
k,2(�). In this

space, we consider an element gi orthogonal to fi . It must be the kth derivative of a piecewise
polynomial Gi of order 2k supported on [ti−1, ti+1]. The function Gi must vanish k-fold at ti−1
and at ti+1, (k − 2)-fold at ti and its (k − 2)nd and (k − 1)st derivatives must be continuous at ti .
It is then guaranteed that gi = G

(k)
i belongs to Ri

k,2(�). To be orthogonal to fi , the function gi

must further be continuous at ti . Let us introduce the polynomial G of order 2k,

G(x) := (−1)k

2k−2k! (1 − x)k−2(1 + x)k,

which vanishes k-fold at −1 and (k − 2)-fold at 1. Let us remark that

G(k)(x) =
(8)

4(1 − x)−2P
(−2,0)
k (x) =

(14)
P

(2,0)
k−2 (x).

We now define the auxiliary function Hi by

Hi(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
�i+1 + k − 1

k + 1
�i

)(
hi

2

)k−1

F

(
2x − ti−1 − ti

hi

)
− 1

k + 1

(
hi

2

)k−2

G

(
2x − ti−1 − ti

hi

)
, x ∈ (ti−1, ti),

−
(

�i + k − 1

k + 1
�i+1

)(−hi+1

2

)k−1

F

(
ti + ti+1 − 2x

hi+1

)
− 1

k + 1

(−hi+1

2

)k−2

G

(
ti + ti+1 − 2x

hi+1

)
, x ∈ (ti , ti+1),

0, x /∈ (ti−1, ti+1),

and we set, for some positive constants 	 and 
 to be chosen later,

Gi := 	

�i + �i+1
Hi, gi := G

(k)
i and ĝi := 


�i + �i+1
gi.

First of all, we have to verify that gi defined in this way is indeed an element of Ri
k,2(�) orthogonal

to fi , i.e. we have to establish the continuity at ti of the (k − 2)nd, (k − 1)st and kth derivatives of
Gi , or equivalently of Hi . The values of the successive derivatives of G at −1 and at 1, obtained
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from (9) and (10), are needed. They are

G(k−2)(1) = 4

k(k − 1)
,

G(k)(−1) = (−1)k, G(k−1)(1) = 2,

G(k+1)(−1) = (−1)k−1 (k − 2)(k + 1)

2
, G(k)(1) = k(k − 1)

2
,

G(k+1)(1) = k(k − 2)(k2 − 1)

12
.

As F (k−2)(1) = 0, the continuity of H
(k−2)
i at ti is readily checked. We have

H
(k−2)
i (t−i ) = H

(k−2)
i (t+i ) = − 1

k + 1
G(k−2)(1) = − 4

k(k2 − 1)
.

As for the continuity of H
(k−1)
i at ti , it follows from

H
(k−1)
i (t−i ) =

(
�i+1 + k − 1

k + 1
�i

)
· 2

k
− 1

k + 1
· 2�i · 2 = 2

k
(�i+1 − �i ),

H
(k−1)
i (t+i ) = −

(
�i + k − 1

k + 1
�i+1

)
· 2

k
− 1

k + 1
· (−2�i+1) · 2 = 2

k
(�i+1 − �i ).

Finally, the continuity of H
(k)
i at ti is a consequence of

H
(k)
i (t−i ) =

(
�i+1 + k − 1

k + 1
�i

)
· 2�i · k − 1

k + 1
· 4�2

i · k(k − 1)

2

= 2k�i�i+1,

H
(k)
i (t+i ) = −

(
�i + k − 1

k + 1
�i+1

)
· (−2�i+1) · k − 1

k + 1
· 4�2

i+1 · k(k − 1)

2

= 2k�i�i+1.

This justifies the definition of gi . We are now going to establish that the bases (fi, gi)
N−1
i=1 and

(f̂i , ĝi )
N−1
i=1 of Rk,2(�) satisfy the three conditions of Lemma 8.

6.1. Condition (i)

First we determine the entries of the Gram matrix. The values of H
(k+1)
i (t−i ) and H

(k+1)
i (t+i )

are required, they are

H
(k+1)
i (t−i ) =

(
�i+1 + k − 1

k + 1
�i

)
· 4�2

i · k(k2 − 1)

4

− 1

k + 1
· 8�3

i · k(k − 2)(k2 − 1)

12
= k(k2 − 1)

3
[�3

i + 3�2
i �i+1],

H
(k+1)
i (t+i ) = −

(
�i + k − 1

k + 1
�i+1

)
· 4�2

i+1 · k(k2 − 1)

4

− 1

k + 1
· (−8�3

i+1) · k(k − 2)(k2 − 1)

12
= −k(k2 − 1)

3
[�3

i+1 + 3�i�
2
i+1].
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Eq. (12) yields, in view of the continuity of H
(k)
i at ti ,

〈gi, ĝi〉 = 	2


(�i + �i+1)3 ·
(
−H

(k−2)
i (ti)

)
·
[
H

(k+1)
i (t−i ) − H

(k+1)
i (t+i )

]
= 	2


(�i + �i+1)3 · 4

k(k2 − 1)
· k(k2 − 1)

3
(�i + �i+1)

3 = 4	2


3
.

We impose from now on 4	2
 = 3, so that 〈gi, ĝi〉 = 1. Consequently, after a reordering of the
bases, the Gram matrix has the form

M

f 1 g1 f 3 g3 . . . f 2 g2 f 4 g4 . . .

f 1

g1

f 3

g3

...

f 2

g2

f 4

g4

I B

C I

.

The matrices B and C are, respectively, lower and upper bidiagonal by blocks of size 2 × 2.
Their entries are given in Lemma 13 below and their �1-norms satisfy max (‖B‖1, ‖C‖1) =
maxi max(�i , �i ), where

�i := |〈fi−1, f̂i〉| + |〈gi−1, f̂i〉| + |〈fi+1, f̂i〉| + |〈gi+1, f̂i〉|,

�i := |〈fi−1, ĝi〉| + |〈gi−1, ĝi〉| + |〈fi+1, ĝi〉| + |〈gi+1, ĝi〉|.

Lemma 13. With �i = �i

�i+�i+1
and �i = �i+1

�i+�i+1
, one has

〈fi−1, f̂i〉 = (−1)k

k
�i , 〈fi+1, f̂i〉 = (−1)k

k
�i ,

〈gi−1, f̂i〉 = 	
(−1)k−1

k
�i , 〈gi+1, f̂i〉 = 	

(−1)k

k
�i ,

〈fi−1, ĝi〉 = 3

	

(−1)k

k
�i , 〈fi+1, ĝi〉 = 3

	

(−1)k−1

k
�i ,

|〈gi−1, ĝi〉| � 3

k
�i , |〈gi+1, ĝi〉|� 3

k
�i .
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Proof. (1) The inner products 〈fi−1, f̂i〉 and 〈fi+1, f̂i〉 have been computed in the previous
section.

(2) We now calculate

〈fi, gi−1〉 = 	

�i−1 + �i

· 2

k
·
[
H

(k)
i−1(t

−
i ) − H

(k)
i−1(t

+
i )
]

= 	

�i−1 + �i

· 2

k

·
[
−
(

�i−1 + k − 1

k + 1
�i

)
· (−2�i ) · (−1)k−1 − 1

k + 1
· 4�2

i · (−1)k
]

= 4	
(−1)k−1

k
�i ,

〈fi, gi+1〉 = 	

�i+1 + �i+2
· 2

k

[
H

(k)
i+1(t

−
i ) − H

(k)
i+1(t

+
i )
]

= 	

�i+1 + �i+2
· 2

k

·
[
−
(

�i+2 + k − 1

k + 1
�i+1

)
· 2�i+1 · (−1)k−1 + 1

k + 1
· 4�2

i+1 · (−1)k
]

= 4	
(−1)k

k
�i+1.

The values of the inner products 〈gi−1, f̂i〉, 〈gi+1, f̂i〉, 〈fi+1, ĝi〉 and 〈fi−1, ĝi〉 are easily deduced,
keeping in mind that 4	2
 = 3.

(3)As for the inner products 〈gi−1, ĝi〉 and 〈gi+1, ĝi〉, we determine first the value ofH(k+1)
i−1 (t−i ).

We have

H
(k+1)
i−1 (t−i ) = −

(
�i−1 + k − 1

k + 1
�i

)
· 4�2

i · (−1)k
k2 − 1

2

− 1

k + 1
· (−8�3

i ) · (−1)k−1 (k − 2)(k + 1)

2
= 2(−1)k−1(k2 − 1)(�i−1 + �i )�

2
i + 4(−1)k�3

i .

Let us note that the value of H
(k)
i−1(t

−
i ) has just been determined in stage (2) when we computed

〈fi, gi−1〉. Then, according to (12), we obtain

〈gi, gi−1〉 = 	2

(�i−1 + �i )(�i + �i+1)
·
{
H

(k−1)
i (ti) ·

[
H

(k)
i−1(t

−
i ) − H

(k)
i−1(t

+
i )
]

− H
(k−2)
i (ti) ·

[
H

(k+1)
i−1 (t−i ) − H

(k+1)
i−1 (t+i )

]}
= 	2

(�i−1 + �i )(�i + �i+1)
·
{

2

k
(�i+1 − �i ) · 2(−1)k−1�i (�i−1 + �i )

+ 4

k(k2 − 1)
·
(

2(−1)k−1(k2 − 1)(�i−1 + �i )�
2
i + 4(−1)k�3

i

)}
= 	2

(�i−1 + �i )(�i + �i+1)
· 4(−1)k−1

k
·
[
(�i−1+�i )(�i+�i+1)�i− 4

k2 − 1
�3
i

]
= 4	2 (−1)k−1

k

[
1 − 4�i−1�i

k2 − 1

]
�i .
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Remembering that 4	2
 = 3, it now follows that

〈gi−1, ĝi〉 = 3
(−1)k−1

k

[
1 − 4�i−1�i

k2 − 1

]
�i

and that 〈gi+1, ĝi〉 = 3
(−1)k−1

k

[
1 − 4�i�i+1

k2 − 1

]
�i .

To complete the proof, we just have to remark that the two expressions in square brackets are not
greater than 1 in absolute value. �

We infer from Lemma 13 that �i � 1+	
k

and �i �
3
	 +3
k

, so that

max (‖B‖1, ‖C‖1) � 1

k
max

(
1 + 	,

3

	
+ 3

)
.

The latter is minimized for 1 + 	 = 3/	 + 3, i.e. for 	 = 3. In view of Lemma 9, the �∞-norm
of M−1 can be bounded provided that k > 4. Precisely, since BC and CB are of bandwidth 3 and
since max (‖B‖∞, ‖C‖∞) � 12

k
, we have∥∥∥M−1

∥∥∥∞ � k(k + 12)(k2 + 80)

(k2 − 16)2 . (16)

6.2. Condition (ii)

From the expression of Hi , we obtain

‖gi‖1 = 3

�i + �i+1

∥∥∥∥(�i+1 + k − 1

k + 1
�i

)
F (k) − 2�i

k + 1
G(k)

∥∥∥∥
1

+ 3

�i + �i+1

∥∥∥∥−(�i + k − 1

k + 1
�i+1

)
F (k) + 2�i+1

k + 1
G(k)

∥∥∥∥
1

= 3

∥∥∥∥F (k) − 2�i

k + 1

(
F (k) + G(k)

)∥∥∥∥
1
+ 3

∥∥∥∥F (k) − 2(1 − �i )

k + 1

(
F (k) + G(k)

)∥∥∥∥
1

� 3
∥∥∥F (k)

∥∥∥
1
+ 3

∥∥∥∥F (k) − 2

k + 1

(
F (k) + G(k)

)∥∥∥∥
1
,

the last inequality holding due to the convexity with respect to �i ∈ [0, 1] of the function involved.
We remark that, according to Proposition 6, the quantity ‖G(k)‖1 = ‖P (2,0)

k−2 ‖1 tends to a constant
as k tends to infinity. This accounts for the rough estimate

‖gi‖1 � 6k

k + 1

∥∥∥F (k)
∥∥∥

1
+ 6

k + 1

∥∥∥G(k)
∥∥∥

1
= 12

k + 1
�k,0 + 6

k + 1

∥∥∥G(k)
∥∥∥

1
� 24

√
2√

�
√

k
.

The same estimate holds for ‖fi‖1, as can be inferred from Section 5.2.

6.3. Condition (iii)

Let us now consider the max-norm of r := ∑
aj f̂j +∑ bj ĝj , which we want to bound in

terms of maxj (|aj |, |bj |). The function r achieves its max-norm on [tl , tl+1], say, where the form
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of r(x), x ∈ (tl, tl+1), is

�P
(1,0)
k−1 (u) + �P (1,0)

k−1 (−u) + �′P (2,0)
k−2 (u) + �′P (2,0)

k−2 (−u), u := 2x − tl − tl+1

hl+1
.

Such a function of u does not necessarily achieve its max-norm at u = ±1, e.g. � = � = 2 and �′ =
�′ = −1 provides a counter-example when k = 5. However, the separate contributions C1(u) =
�P

(1,0)
k−1 (u) + �P (1,0)

k−1 (−u) and C2(u) = �′P (2,0)
k−2 (u) + �′P (2,0)

k−2 (−u) do. The first contribution is

C1(u) = −al�l+1

2(�l + �l+1)
F (k)(−u) + al+1�l+1

2(�l+1 + �l+2)
F (k)(u)

+
bl

(
�l + k−1

k+1�l+1

)
�l+1

2(�l + �l+1)2 F (k)(−u) +
bl+1

(
�l+2 + k−1

k+1�l+1

)
�l+1

2(�l+1 + �l+2)2 F (k)(u).

Its max-norm is achieved at 1, say, i.e. |C1(u)|� |C1(1)|, and we get

|C1(u)| �

⎡⎣ �l+1

2(�l + �l+1)
+ �l+1

2(�l+1 + �l+2)
k

+
(
�l + k−1

k+1�l+1

)
�l+1

2(�l + �l+1)2 +
(
�l+2 + k−1

k+1�l+1

)
�l+1

2(�l+1 + �l+2)2 k

⎤⎦max
j

(|aj |, |bj |)

=
⎡⎣
(
�l + k

k+1�l+1

)
�l+1

(�l + �l+1)2 +
(
�l+2 + k

k+1�l+1

)
�l+1

(�l+1 + �l+2)2 k

⎤⎦max
j

(|aj |, |bj |).

We use the fact that, for t �0, one has [t + k/(k + 1)]/(t + 1)2 �k/(k + 1) with t = �l/�l+1 and
t = �l+2/�l+1 to obtain |C1(u)|�k maxj (|aj |, |bj |).

As for the second contribution, we get

|C2(u)| =
∣∣∣∣∣− bl �

2
l+1

(k + 1)(�l + �l+1)2 G(k)(−u) − bl+1 �2
l+1

(k + 1)(�l+1 + �l+2)2 G(k)(u)

∣∣∣∣∣
� 1

k + 1

(
1 + k(k − 1)

2

)
max

j
(|aj |, |bj |) = k2 − k + 2

2(k + 1)
max

j
(|aj |, |bj |).

Putting these two contributions together, we deduce that∥∥∥∑ aj f̂j +
∑

bj ĝj

∥∥∥∞ � 3k2 + k + 2

2(k + 1)
max

j
(|aj |, |bj |) ∼

k→∞
3k

2
max

j
(|aj |, |bj |).

6.4. Conclusion

The estimates obtained from conditions (i)–(iii) yield

∥∥PRk,2(�)

∥∥∞ �1 · 24
√

2√
�
√

k
· 3k

2
= 36

√
2√

�

√
k, thus

∥∥PSk,2(�)

∥∥∞ �38
√

2√
�

√
k.

In contrast with the case of continuous splines, the numerical values of our upper bound are
unsatisfactory, e.g. we obtain roughly 1574 for k = 6. When k is small, this is partly due to the
poor estimate of (16). One way to improve it would be to consider bases of Rk,2(�) better suited
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to the evaluation of the inverse of the Gram matrix, providing in particular a bound also valid for
k = 3 and 4.

Let us finally remark that if we consider PRk,2(�)(•)(t−1 ) in the case N = 2, t1 → 0, we
can again show that sup� ‖PRk,2(�)‖∞ �2�k,0, hence that sup� ‖PSk,2(�)‖∞ ��k,0. If the lower
bound �k,m is indeed the value of �k,m, this reads �k,2 ��k,0, in accordance with the expected
monotonicity of �k,m.

Acknowledgment

I thank A. Shadrin who instigated this work and took an active part in valuable discussions.

References

[1] C. de Boor, The quasi-interpolant as a tool in elementary polynomial spline theory, in:Approximation Theory,Austin,
TX, Academic Press, New York, 1973, pp. 269–276.

[2] C. de Boor, A bound on the L∞-norm of L2-approximation by splines in terms of a global mesh ratio, Math. Comput.
30 (136) (1976) 765–771.

[3] S. Demko, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer. Anal. 14 (4)
(1977) 616–619.

[4] D. Kershaw, Inequalities on the elements of the inverse of a certain tridiagonal matrix, Math. Comput. 24 (109)
(1970) 155–158.

[5] W. Light, Jacobi projections, in: Z. Ziegler (Ed.), Approximation Theory and Applications, Academic Press,
New York, 1981, pp. 187–200.

[6] L. Lorch, The Lebesgue constants for Jacobi series, I, Proc. Amer. Math. Soc. 10 (5) (1959) 756–761.
[7] A.A. Malyugin, Sharp estimates of norm in C of orthogonal projection onto subspaces of polygons, Math. Notes 33

(1983) 355–361.
[8] K.I. Oskolkov, The upper bound of the norms of orthogonal projections onto subspaces of polygonals, in:

Approximation Theory (Warsaw, 1975), Banach Center Publication, 4, PWN, Warsaw, 1979, pp. 177–183.
[9] C.K. Qu, R. Wong, Szegö’s conjecture on Lebesgue constants for Legendre series, Pacific J. Math. 135 (1988)

157–188.
[10] A. Shadrin, The L∞-norm of the L2-spline projector is bounded independently of the knot sequence: a proof of de

Boor’s conjecture, Acta Math. 187 (2001) 59–137.
[11] G. Szegö, Asymptotische Entwicklungen der Jacobischen Polynome, Schriften der Königsberger Gelehrten

Gesellschaft, naturwissenschaftliche Klasse 10 (1933) 35–112.
[12] G. Szegö, Orthogonal polynomials, American Mathematical Society, Colloquium Publications, vol. XXIII, 1959.


